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First-order kinetic models are often used to profile the degradation of pest-control compounds in soil.
This approach is based on enzyme theory and is often favored due to its simplicity and its requirement
by regulatory agencies. Here, linear and nonlinear regression approaches to modeling first-order
decay are compared. Composite residual plots of many soil degradation data sets are presented on
a normalized scale. These plots illustrate the general error structure for the data and are useful for
detecting common mis-specifications of the models. Results indicate that a nonlinear regression
approach to modeling first-order decay of compounds in soil more accurately describes most data
sets when compared with a linear approach. Specifically, the observed error structure does not support
the broad use of a logarithmic transformation to stabilize the variance. In addition, models generated
using the linear approach generally exhibit more dramatic systematic deviations from the observations
as compared with models generated using the nonlinear approach. The analysis methods described
here may be useful for comparing alternative models in this and other research areas.
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INTRODUCTION

Determining how rapidly a substrate degrades is a common
objective of many scientific studies. The degradation rate for a
pest-control substance is often considered when the safety of a
potential product is assessed. For example, the in vitro digest-
ibility of insecticidal crystal proteins derived fromBacillus
thuringiensishas been used, in part, to assess the human safety
of transgenic plants that express these proteins (1), and the
degradation of pest-control substances in soil has been used to
help assess potential exposure in the environment. However,
there is often significant error associated with measuring the
concentration of materials as they decay. For this reason,
mathematical models are usually fit to the data to allow estimates
of the degradation rate to be made. In addition to fitting a smooth
response to potentially variable observations, such models allow
specific point estimates of decay such as a DT50 (time until
50% decay) or DT90 (time until 90% decay) to be calculated.
Point estimates of decay are useful for comparing the degrada-
tion rates among different materials and may help determine
potential exposure.

Here we explore two common approaches to modeling the
decay of pest-control substances in soil based on first-order
kinetics. First-order decay is often the starting point for modeling
the degradation of pest-control substances in soil. This is based
on the hypothesis that the degradation is mediated by enzymes
present in the microbial population of the soil and that these
enzymes act much as they would in solution (2). It is also

assumed that these enzymes are at much higher concentration
than the pest-control substance. Under these conditions, the
Michaelis-Menten rate law would predict a first-order decay
pattern (3). More sophisticated mechanistic models address
potentially more complex kinetics, such as soil adsorption and
desorption, where first-order degradation is constrained by the
availability of the pest-control substance to soil microbes and/
or where two or more different first-order decay rates occur in
two or more different soil compartments. A convenient attribute
of substances that decay according to simple first-order kinetics
is that the rate of degradation is proportional to the amount of
substrate available, allowing a specific type of DT50, a half-
life, to describe the degradation pattern over the entire duration
of decay. For this reason, regulatory agencies often favor this
approach even when more complex mechanistic models fit the
data more closely (4).

The traditional method of modeling first-order decay is to
logarithmically transform the percent remaining compound and
to estimate the relationship between the transformed percent
remaining compound and the degradation interval (time) using
least-squares, linear regression. An alternative method, made
commonly accessible by advances in computer technology, is
to determine the regression line in the natural scale using least-
squares, nonlinear regression. An advantage of the linear
regression approach is that a mathematical solution is always
possible. Nonlinear regression is an iterative process and, in
some cases, a solution may be difficult or impossible to obtain.
If a degradation data set follows a perfect first-order decay
pattern, then the two approaches provide the same mathematical
solution. Therefore, the difference between the approaches is

* Author to whom correspondence should be addressed [telephone
(317) 337-3551; fax (317) 337-3255; e-mail raherman@dow.com].

4722 J. Agric. Food Chem. 2003, 51, 4722−4726

10.1021/jf034135a CCC: $25.00 © 2003 American Chemical Society
Published on Web 07/03/2003



how they handle deviations in the observed percent remaining
compound from the predictions made by the model (residuals).
The linear approach minimizes the squared distances between
the logarithmically transformed observations of percent remain-
ing compound and the estimates based on the regression line,
and the nonlinear approach minimizes the squared distances
between the percent remaining compound and the estimates in
the natural scale.

Several hypothetical arguments have been raised with regard
to choosing linear or nonlinear approaches to estimating the
first-order decay of pest-control substances in soil. An assump-
tion made when using either approach is that the error structure
around the observed percent remaining compound is homoge-
neous in the scale under which the regression is conducted. It
is also assumed for both methods that the time variable has no
significant error associated with it. Depending on the analytical
technique used to measure the percent remaining compound,
one might conjecture that higher observations of percent
remaining compound are associated with higher absolute error.
For instance, measuring an initial percent remaining compound
of 2.0 mg/g of soil may be associated with greater error on an
absolute scale than measuring 0.002 mg/g at a later time point,
simply because the latter measurement is constrained by the
zero asymptote. Logarithmically transforming data, when the
error is proportional to the mean, is a common method to reduce
heterogeneous error (5). Under such conditions, one could argue
that the linear approach where the percent remaining compound
is logarithmically transformed is most appropriate, because it
hypothetically results in a more homogeneous error pattern.

Conversely, one might argue that the error structure is homo-
geneous in the natural scale and that logarithmically transform-
ing the data inappropriately weights the lower observations of
the percent remaining compound and later time points more
heavily than the initial ones. For practical reasons, few studies
are done with sufficient replication to empirically determine the
preferred approach. If the error pattern for a particular study
were known, weighted, least-squares regression could be used
to directly correct for a nonhomogeneous error pattern.

Here we have compiled empirical data to investigate the error
structure around the measurements of percent remaining com-
pound made for pest-control substances in soil decay studies.
We have generated composite plots in which the residuals of
the percent remaining measurements for many data sets are
plotted against a normalized decomposition scale. We have used
these plots to investigate the behavior of linear and nonlinear,
first-order kinetic models across many data sets and to make
recommendations for their use.

MATERIALS AND METHODS

Sixty-one degradation data sets (6-20) were compiled where results
were conducive to reanalysis (tabular form). Soil decay studies with
synthetic pest-control agents and proteinaceous insect-control materials
were selected from the literature. Additional results were obtained from
unpublished studies conducted at Dow AgroSciences (Indianapolis, IN).
For the purpose of standardization, the initial responses were set to
100%, and the remaining response values were scaled as relative percent
of the initial values. This had no impact on the form of the relationship
between the percent remaining compound (response) and time (cova-
riate) or on modeling results, other than affecting the magnitude of
coefficients.

Each data set was analyzed using both a first-order, least-squares,
linear model and a nonlinear model (21). For the linear model, the
natural logarithm of the percent remaining was regressed against time
using linear, least-squares regression [ln(% remaining)) slope× time
+ intercept]. For the nonlinear model (% remaining) intercept×

eslope×time), the percent remaining was regressed against time using
nonlinear, least-squares regression. The latter model was used to match
the form of the linear model, where the intercept is estimated and the
asymptote is set to zero.

Residual plots were generated by graphing the deviation in the
observed percent remaining from the estimate generated by each model.
To standardize multiple data sets with greatly varying time scales on
a single plot, thex-axis was scaled to the observed percent remaining
in one set of plots and the predicted percent remaining in another set
of plots. In addition to normalizing thex-axis scale, this allowed the
performance of the models to be assessed around specific observed
and predicted levels of decay such as 50% remaining or 10% remaining.
The x-axis on the residual plots was truncated at 100% remaining for
readability even though a few of data sets actually had observations
above the initial observed value (>100% recovery,Figure 1). The
residuals for plots versus predicted percent remaining were calculated
from data scaled to they-intercept for each model, because this is the
scale generally used to calculate point estimates of decay such as half-
lives. They-axis for the latter plots was truncated at+200% even
though a few data points were greater than this in the case of the linear
model. This truncation allowed the scale of the plots to be expanded
sufficiently to interpret the vast majority of the residuals. Models that
fit the data well produce residual plots in which the data are uniformly
distributed around the horizontal line at zero and which show minimal
scatter around this line (Figure 2).

RESULTS AND DISCUSSION

Figure 1 illustrates the fit of both the linear and nonlinear,
first-order models to each of the 61 soil degradation data sets
evaluated here (in the natural scale). The plots inFigure 1 are
ordered on the basis of the agreement of the two models (percent
disagreement of estimated half-lives). It should be noted that
34 of the 61 data sets describe the degradation of two materials
(florasulam and picloram). However, these materials generated
a full spectrum of curve shapes varying from those well fit by
a first-order model to those that were fit poorly by this model.
Also, when a first-order fit was poor, these materials displayed
patterns similar to the other materials investigated here, in terms
of how each of the first-order models mis-specified the
relationship between time and decay. For this reason, the
predominance of these two materials in the data sets does not
appear to bias the conclusions drawn here.

The nonlinear regression converged on all of the data sets
providing a model solution in each case. As expected, the overall
error associated with the linear model (Figure 2A,C) is greater
than that observed with the nonlinear model (Figure 2B,D).
This is necessarily so because these residual plots are in the
natural scale, and the linear model minimizes the squared
residuals in the logarithmic scale, whereas the nonlinear model
minimizes the squared residuals in the natural scale. For this
reason, one must take care when comparing the two models on
the basis of the overall error illustrated inFigure 2. However,
comparison of the pattern of the error across thex-axis within
each figure, as well as systematic departures from the models,
is useful for assessing the two approaches.

Inspection of the nonlinear residuals plot versus observed
percent remaining (Figure 2B) did not indicate any systematic
patterns in the error structure with the possible exception of
the zero time point (100% remaining), where a greater spread
of residuals may be evident. However, initial percent remaining
compound measurements are often suspect, especially for field
dissipation studies (22). For the nonlinear model, this pattern
in the data is most likely an artifact of the large number of
observations at the initial time point (61 data points) and not
increased error at specifying they-intercept. The nonlinear model
may also slightly underestimate percent remaining compound
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when<10% of the compound remains, although the deviations
appear to be small. The error associated with the nontransformed
data does not appear to be proportional to the percent remaining
compound, so, as a general rule, logarithmically transforming
the data to stabilize the error does not appear to be needed.

The residuals plot for the linear regression versus observed
percent remaining (Figure 2A) does exhibit definite nonsym-
metrical patterns. Like the nonlinear model, the greatest residuals
are observed at the zero time point (100% remaining). As
expected, the error decreases as the percent remaining ap-
proaches 50% remaining. Because the squared residuals are
minimized on logarithmically transformed percent remaining
compound values, the weight of the larger percent remaining
compound values are reduced more significantly compared to
lower percent remaining compound values and, thus, the
residuals are greater for the larger percent remaining compound
measurements in the natural scale. The error for the linear model
seems to be relatively stable between 50% remaining and 0%
remaining. This stability may be the result of the confounding
effects of experimental variability and mis-specification of the
model (as described in the following paragraph).

A second observation from the residuals plot for the linear
regression (Figure 2A) is the presence of systematic deviations
from the model. For percent remaining compound measurements
>50%, the model tends to underestimate the values, and for
percent remaining compound measurements<50%, the model
tends to overestimate the values. Such systematic deviations
do not appear to be as dramatic for the nonlinear model (Figure
2B). It is likely that these systematic errors are caused by
incorrectly specifying the model as opposed to observational
error (Figure 1, latter plots). In studies in which the data pattern
favors a two-compartment model, the values for percent
remaining compound tail off more slowly than for studies in
which a single-compartment, first-order decay pattern is exhib-
ited. When the linear model is fit, a greater relative weight is
given to the lower percent remaining compound values that
occur at the later time points. This has the effect of decreasing
the slope of the estimated decay line to a greater degree than
for the nonlinear model in which all of the observations are
weighted equally. Decreasing the slope of a first-order decay
curve, modeled to data that fits a two-compartment pattern, will
cause systematic underestimation of the larger percent remaining
compound values and overestimation of the smaller percent
remaining compound values. This will have the further effect
of reducing the estimatedy-intercept. Because measures of
degradation rate are most often calculated on the basis of
reductions in percent remaining compound estimates compared
to the estimatedy-intercept, the linear model will also systemati-
cally mis-specify these rates and point estimates such as half-
lives (Figure 2C). Using the linear, first-order model in these
situations may artificially increase such point estimates and
systematically result in an overestimation of persistence.

It should be noted that an alternate explanation for an apparent
biphasic decay pattern in laboratory studies may be the loss of
soil viability over time (4). For decay that is mediated by
microbes, the initial degradation rate may more accurately
represent the decomposition pattern under field conditions.
When the aforementioned scenario exists, systematically reduc-
ing the weight of the initial data points, as is done for the linear
model, may produce misleading decay results.

Of special consideration in soil degradation studies is how
well the models fit the observations around the predicted half-
life and DT90 values for the compounds of interest. These two
point estimates of decay are often used to make regulatory

Figure 1. Fit of linear (dotted line) and nonlinear (solid line) regression
lines to soil degradation data sets. Graphs are ordered based on the
agreement of the half-lives estimated by each regression (as a percentage
of lesser half-life).
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decisions concerning the persistence of compounds, and as such,
the ability of models to fit observed values at these specific
time points is especially important. Panels C and D ofFigure
2 illustrate the fit of each model versus predicted percent
remaining. For these plots, the distribution of data points along
the x-axis and the magnitude of the residuals were scaled on
the basis of they-intercept (initial concentration) estimated by
each model. This allows evaluation of the point estimates
obtained with each model.

The linear model has more error around percent remaining
compound predictions at the half-life than does the nonlinear
model (Figure 2C,D). This is not unexpected in light of the
systematic error seen in the estimate of the intercept for the
linear model and the diminished weight given to higher percent
remaining compound values, both due to the logarithmic
transformation. The linear model also tends to slightly overes-
timate the percent remaining compound in many cases, whereas
the nonlinear model shows no apparent systematic deviation
from the data in this region.

The linear model seems to generally fit well around the
predicted DT90 values, but comparisons with the nonlinear model
need to be made with caution (Figure 2C,D). Because the linear
model often predicts longer DT90 values when compared with
the nonlinear model, primarily due to systematic underestimation
of the intercept, the percent remaining compound values
observed at these later times are smaller. The percent remaining
is constrained by zero asymptote and the percent remaining
compound values at later time points are smaller, so absolute
residuals are also necessarily smaller. These factors also
contribute to a smaller number of data points in this region for
the linear model, creating the illusion of less variability. The
residuals around the nonlinear model are also small in this area
of prediction but tend to slightly underestimate the percent
remaining compound.

During our investigation, we examined the fit of two
additional exponential models, each of which estimated the

asymptote rather than assigning it to zero percent remaining
(not published). These models included a two-parameter model
in which the intercept was assigned to 100% and the asymptote
was estimated [% remaining) a + (100- a)e-kt] and the three-
parameter model in which both the intercept and asymptote were
estimated (% remaining) a + b e-kt). Although these models
were often excellent at fitting the data, they frequently estimated
asymptotes>10%, which precludes the calculation of DT90

values or true half-lives. This reduces the utility of these models
for regulatory purposes. Because the models assume that a
certain percent of the compound is infinitely stable, they are
also difficult to rationalize with empirical data, which typically
show systematically diminishing amounts of compound even
at the latest time points.

The construction of normalized residual plots appears to be
useful for evaluating the fit of a linear and a nonlinear, first-
order model to the decay of pest-control substances in soil. The
general error structure and systematic departures from the
models are apparent in such plots. Degradation data sets are
often too sparse to adequately assess the error structure of
percent remaining compound measurements or to allow the
specification of more complex models. Furthermore, regulatory
agencies often request that a first-order model be fit to soil
degradation data. The analysis of many small soil degradation
data sets allows two common approaches to modeling first-order
decay to be compared. The lack of an error structure showing
proportionality to the mean for the nonlinear model indicates
that a transformation to stabilize error is not justified as a general
principle for these types of studies. Systematic departures from
the linear model, and systematic misassignment of the intercept
and point estimates of decay, indicate that this approach should
be used with great caution.

Our analysis suggests that use of the nonlinear approach is
generally preferable to the linear approach for estimating the
first-order decay of pest-control substances when the error
structure or a more appropriate data model is unknown. The

Figure 2. Residuals (observed−predicted) for the linear (A, C) and nonlinear (B, D) first-order model plotted against the observed (A, B) and predicted
(C, D) percent remaining. The residuals for plots A and C are scaled on the basis of setting the initial observation to 100% remaining, and the residuals
for plots C and D are scaled on the basis of setting the y-intercept predicted by the model to 100%. Trend lines were generated using the S-Plus supsmu
function with the span set to 50% (21).
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plots depicted inFigure 1 indicate that although many data sets
are adequately represented by the nonlinear exponential model
(earlier plots), this model is seen to deviate from the data in a
systematic manner for many other data sets (later plots). One
pattern in these plots is an underestimation of the smaller percent
remaining compound values seen at advanced time points. The
general pattern of mis-specification seen in the later plots of
Figure 1 may serve as an indication that, in some cases, a
different model is more appropriate even if the coefficient of
determination (R2) is relatively high. For this reason, the
conformation of these data sets to additional degradation models
is underway in our laboratory using the approaches outlined
here. The compilation of many small data sets into normalized
residual plots may also provide a useful tool for evaluating
competing models in other research areas.
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